Carl, I, and the Wikipedia put together this list.
- Theory
- Learning
- Markov Methods & Probabilistic Graphical Models
- Neural nets
- Boltzmann machine, Restricted Boltzmann machines
- Deep Belief Networks (Hinton1, Hinton2, Drop out)
- Sparse Deep Belief Networks and Autoencoders
- Pattern Recognition
- Naive Bayes
- Support vector machines
- Decision trees (CART)
- Predictive Analytics
- Kernel methods (kernelized support vector machine)
- Kernal Density Estimation (Parzen Windows)
- Random Forests
- Structured Prediction
- Dimension Reduction
- LDA & QDA (Linear and Quadratic Discriminant Analysis)
- PCA
- ICA
- Self-organizing maps. (Kohonen)
- Latent Dirichlet Allocation
- Curve fitting