You are currently browsing the archive for the Robots category.

broke my hand on thursday, so typing is difficult.

check out this video

Looks like KUKA Robotics decided to demonstrate the versatility, agility and speed of their Agilus robot by programming it to play ping-pong against a the world-class ping-pong player Timo Boll.  Check out the overly dramatic but cool video on Youtube.  A few more details can be found at Robohub.


ASIMO is becoming very impressive–here’s the video.

Robin Hanson gave a very interesting TED talk about a possible technological singularity based on AI and robotics.  I outline his talk below and add a few ideas from Hanson’s 1998 article “Long-Term Growth As A Sequence of Exponential Modes“, Ray Kurzweil’s essay (2001) and book (2005), and Bill Joy’s Wired article (2000).


History of Economic Growth Rates



Hanson’s “Great Eras” graph illustrates major economic revolutions and their effect on growth rates on a log-log scale.  Humans doubled their population about every 200,000 years until the agricultural age started 10,000 years ago.1  In the agricultural age, human population and production doubled every 1000 years. Then the industrial revolution occurred and our world economy started doubling every 15 years.  Both revolutions increased the growth rate by a factor of 50 to 200.  (Kurzweil extends this pattern of revolutions into both the past and the future.)

What if a third major economic revolution occurred?  How could it occur?


For the past 10,000 years, human economic growth has been based on land, capital, and labor.  For the past 200 years we have increased world productivity by population growth, education, and by creating bigger/better tools.  Intelligent robots could reproduce more quickly than us, transfer knowledge faster, and they would be their own tools.  Robots or artificial intelligences would be so extremely productive that we could experience an economy where our production doubled every month.  The amount of stories, art, television, games, science, philosophy, and legal opinions produced would be phenomenal.

Hansen suggest a path to a humanistic robotic world created by this third economic revolution.  Artificial intelligence might first be created by mapping the human brain and up-loading human brains into computer hardware.  The most productive human individual minds uploaded into computers would proliferate the fastest and thus would dominate.  They would be immortal and they would be able to travel across the world quickly and cheaply.   Humans would not be able to compete and perhaps we would all retire.  The uploaded human minds would live in a beautiful virtual reality.

Hansen describes a society of virtual minds.  The most productive minds would acquire or create the most computer resources.  Their software personality emulations would run the fastest relative to real-time.  He speculates about the structure of this virtual society which includes a caste system, their working habits, and the virtual worlds that the different castes would inhabit.
1This estimate is from “Long-Term Growth As A Sequence of Exponential Modes” and is based on “Population Bottlenecks and Pleistocene Human Evolution” Hawks et al. (2000) andOn the number of members of the genus Homo who have ever lived, and some evolutionary implications” Weiss (1984).


Erik Brynojolfsson, director of the MIT Center for Digital Business, gave a great TED talk on the recent changes in world-wide productivity, computers, machine learning and the “great stagnation“.  There has been a stagnation in GDP per capita for the last 5 years in the United States, Europe, and Japan.  However, growth has continued unabated in India, China, and Brazil.  Economist Tyler Cowen is not particularly optimistic about the current economic situation which he describes in his book “The Great Stagnation: How America Ate All The Low-Hanging Fruit of Modern History, Got Sick, and Will (Eventually) Get Better” ($4 Kindle edition). Erik disagrees with the idea that the economy, technology, and science are stagnant.  Instead, we are being confused by what he calls the “great decoupling” of productivity growth and employment/median income.  He believes that we are actually in the early phases of the “new machine age” which will create more wealth than the industrial revolution.  Here are some notes on his TED talk:

  • The introduction of electricity did not immediately lead to large productivity growth. At first, factory managers just replaced existing steam machines with electric machines. It took thirty years (one generation) before the factories were redesigned with electricity in mind and new work processes were created. Then productivity growth took off.
  • Big general purpose technologies like fire, agriculture, writing, metallurgy, printing press, steam engine, telecommunications & electricity, and now computers cause “cascades of complementary innovations”.
  • The GDP growth rate in America has been fairly steady at an average of 1.9% per year since 1800.
  • Erik graphically compares the 1960-2011 productivity growth caused partly by computers and the 1890-1940 productivity growth caused by electricity.  They appear quite similar.
  • Productivity has grown faster (2.4% per year) in the last decade than any other decade since 1970. The average productivity growth rate was about 2.3% during the second industrial revolution.
  • World GDP in the last decade has grown faster than any other decade in history.
  • New growth has been driven by thoughts and ideas more than physical products. This growth is hard to measure. The massive utility of free products like Google Search or the Wikipedia is not included in GDP.
  • The “new machine age” is “digital, exponential, and combinatorial”.
  • Digital goods are perfectly, freely replicable and they have near zero transportation cost (often moving at great speed crossing the globe in a minute.)
  • Computer power has grown exponentially. In Erik’s words, “Computers get better faster than anything else ever.” (2013 playstation = 1996 supercomputer)
  • We are not designed by evolution to anticipate exponential trends. We expect linear trends.
  • We now have Big Data and Machine Learning which allow us to analyze everything more deeply.
  • He disagrees with the idea of “low hanging fruit” inventions (see e.g. Cowen’s book). He thinks that “each innovation produces building blocks for even more innovations”.
  • The digital, exponential, and combinatorial nature of the new machine age will lead to the greatest industrial revolution in history. (see e.g. cat transportation at 6:55 in the video).
  • Machine Learning may be the most important innovation of this revolution. (The Watson Jeopardy team improved faster than any human could by using machine learning.)  Watson’s technology is now being applied in the legal, banking, and medical fields.
  • “The great decoupling” is the decoupling of high productivity growth from employment and median income.
  • Jobs are being replaced by computers.
  • In 1997 Gary Kasparov was beaten by the super computer Deep Blue. Today a cell phone can beat a chess grandmaster.
  • In computer assisted chess play (Advanced Chess), sometimes the winners are neither computer experts nor grandmasters. Instead, they were the best at interacting with the computer—guiding its exploration of the possibilities. So, maybe we will not lose our jobs to computers, rather we will collaborate with computers to create wonderful things.

This Russian rover traveled over 20 miles on the moon in 1973!

“Once human cognition is replaced, what else have we got? For the ultimate extreme example, imagine a robot that costs $5 to manufacture and can do everything you do, only better. You would be as obsolete as a horse.”


“They’re probably going to render us extinct one day, so we might as well enjoy their servitude, while it lasts.”


Caleb Crane wrote

“The mention of military technology brings me to my last idea. This is the challenge of the robot utopia. You remember the robot utopia. You imagined it when you were in fifth grade, and your juvenile mind first seized with rapture upon the idea of intelligent machines that would perform dull, repetitive tasks yet demand nothing for themselves. In the future, you foresaw, robots would do more and more, and humans less and less. There would be no need for humans to endanger themselves in coal mines or bore themselves on assembly lines. A few people would always be needed to repair and build the robots, and this drudgery of robot supervision would have to be rewarded somehow, but someday robots would surely make wealth so abundant that most people wouldn’t need to work and would be free merely to enjoy and cultivate themselves—by, say, hunting in the morning, fishing in the afternoon, and doing literary criticism after dinner.

Your fifth-grade self was wrong, of course. Robots aren’t altruistic beings; they’re capital investments; and though robots may not ask to be paid, their owners demand a return on their investment. We now live in the robot utopia, which isn’t one. Thanks in large part to computerized mechanization, manufacturing productivity in the past century has increased many times over. Standards of living are higher than they ever were, but we no longer need as many humans to work as we once did. Perhaps not coincidentally, human wages, in America at least, have stagnated since the 1970s. If humans made no more money in the past four decades, where did the wealth created by the higher productivity go? Toward robot wages, as it were. The owners of the robots took the money—that is, the capitalists. Any fifth-grader can see where this leads. At some point society has to choose. Either society accepts the robots’ gift as a general one, and redistributes the wealth that the robots inadvertently concentrate, or society allows the robots to become the exclusive tools of an ever-shrinking elite, increasingly resented, in confused fashion, by the people whom the robots have displaced.”



Here’s a link to the video.  The tiny “Alien” skull below is printed in less than three minutes.

« Older entries