“Active Learning Literature Survey”

In “Active Learning Literature Survey“, Burr Settles (2010) reviews uncertainty sampling (Lewis and Gale, 1994), margin sampling (Scheffer et al., 2001), entropy sampling, optimal experimental design, query-by-committee (Seung et al., 1992), query-by-boosting, query-by-bagging, expected model change, expected error reduction, expected information gain, variance reduction, and density weighted methods.  He then comments on theoretical and empirical performance of these methods, practical considerations, and related areas of machine learning including: semi-supervised learning, reinforcement learning, and compression.