Maximizing a Function over Integers (Part 6)

In the previous 5 parts, I described several theorems which are useful for finding the maximum value of a function $f$ over integers.  In parts 1, 2, and 3, $f$ was concave.  In part 4, $f$ was continuous.  And in part 5, there were no restrictions on $f$.  In this post, the focus is on finding the maximum value of an investment game function over integers.

What is the maximum of $$f(x)=\exp(\alpha x) (T-x)$$ over all integers?  This function appears in several investment board games including Terraforming Mars, Master of Orion, and Roll for the Galaxy.

EXAMPLE $f(x)=\exp(\alpha x) (T-x)$

Let’s find the maximum of $f:\mathbb{R}\rightarrow\mathbb R$ where $$f(x)=\exp(\alpha x) (T-x),$$ $\alpha>0$, and $T>0$. The $\exp(\alpha x)$ is always postive, so $$f(x)>0\quad\mathrm{\ if\ and\ only\ if\ } x<T.$$

Let $g(x) = f(x+1) – f(x)$ as in “Maximizing a Function over Integers (Part 5)“. Let $\beta=\exp(\alpha)$. We can use some algebra to better understand the behavior of $g$.

$$\begin{aligned}g(x) &= f(x+1) – f(x)\\&= \exp(\alpha (x+1)) (T-(x+1)) – \exp(\alpha x) (T-x)\\&= \beta\beta^x (T-x -1) – \beta^x (T-x)\\&= \beta^x [ \beta(T-x -1) - T+x]\\&=\beta^x [ (1-\beta) x + (\beta-1) T -\beta]\\&=\beta^x [ (\beta-1)(T-x) -\beta].\end{aligned}
$$

So $g(x)>0$ if and only if

$$\begin{aligned}(\beta-1)(T-x) -\beta &>0\\(\beta-1)(T-x) &>\beta\\T-x &>\frac{\beta}{\beta-1} \\T- \frac{\beta}{\beta-1} &> x\\\gamma &> x\end{aligned}
$$
where $$\gamma=T- \frac{\beta}{\beta-1}.$$ Consequently,

$g(x)<0$ if and only if $\gamma < x$,

and by reversing the inequalities in the argument above,

$g(x)>0$ if and only if $\gamma > x$.

(This statement implies that if we restrict $f$ to integer inputs, then $f$ is increasing for inputs less than $\gamma-1$ and decreasing for inputs greater than $\gamma$.)

We can apply the lemmas from Part 5 to conclude that

– if $\gamma$ is an integer, then the maximum value of $f$ amoung all integers is $f(\gamma)$ which is also equal to $f(\gamma+1)$, and
– if $\gamma$ is not an integer, then the maximum value of $f$ amoung all integers is $f(\mathrm{ceil}(\gamma))$ and that maximum value is only attained by the input $\mathrm{ceil}(\gamma)$.

(Technical note: The lemmas in Part 5 can be applied with $b=T+1$ and and real number $a<\gamma-1$.)

$f(x) = 1.1^x (100-x)$

For example, if $$f(x) = 1.1^x (100-x)=\exp(\alpha x)(T-x)$$ with $\alpha=\log(1.1)$ and $T=100$, then

$$\begin{aligned}\beta=\exp(\alpha)&=\exp(\log(1.1)) = 1.1,\quad\mathrm{and}\\ \gamma= T- \frac{\beta}{\beta-1}&= 100- \frac{1.1}{1.1-1}= 100 -11 = 89.\end{aligned}$$

We conclude that the maximum value of $f$ over all integers is $$f(\gamma) =f(\gamma+1) = f(89)=f(90)\approx53130.2$$ Note that $f(88) \approx 52691.1$ and $f(91)\approx 52598.9$.

 

$f(x)=(1+1/k)^x(T-x).$ for any positive integer $k$

More generally, let $k$ be any positive integer and let $$f(x)=(1+1/k)^x(T-x).$$
Then $$f(x)=\exp(\alpha x)(T-x)$$ with $\alpha=\log(1+1/k),$

$$\begin{aligned}\beta=\exp(\alpha)&=\exp(\log(1+1/k)) =1+1/k,\quad\mathrm{and}\\\gamma= T- \frac{\beta}{\beta-1}&= T – \frac{1+1/k}{1+1/k-1}= T- (k+1) .\end{aligned}$$

We conclude that the maximum value of $f$ over all integers is $$f(\gamma) =f(\gamma+1) = f(T-k-1)=f(T-k).$$

 

AcknowledgmentS

Thanks to stackedit.io for helping me write the TeX.  GPT3 also recommended a change to one of the sentences in the introductory paragraph.