In “A Tutorial on the Cross-Entropy Method” De Boer, Kroese, Mannor, and Rubinstein (2005) write

“The CE method was motivated by an adaptive algorithm for estimating probabilities of rare events in complex stochastic networks (Rubinstein, 1997), which involves variance minimization. It was soon realized (Rubinstein, 1999, 2001) that a simple cross-entropy modiﬁcation of Rubinstein (1997) could be used not only for estimating probabilities of rare events but for solving difﬁcult COPs as well. This is done by translating the “deterministic” optimization problem into a related “stochastic” optimization problem and then using rare event simulation techniques similar to Rubinstein (1997). Several recent applications demonstrate the power of the CE method (Rubinstein, 1999) as a generic and practical tool for solving NP-hard problems.”

and then go on to compare cross-entropy with simulated annealing, tabu search , genetic algorithms, the nested partitioning method, ant colony optimization, rare event estimation algorithms, importance sampling, and algorithms for continuous multi-extremal optimization.

Several applications are listed in the introduction.

“An increasing number of applications is being found for the CE method. Recent publications on applications of the CE method include: buffer allocation (Alon et al., 2005); static simulation models (Homem-de-Mello and Rubinstein, 2002); queueing models of telecommunication systems (de Boer, 2000; de Boer, Kroese, and Rubinstein, 2004); neural computation (Dubin, 2002, 2004); control and navigation (Helvik and Wittner, 2001); DNA sequence alignment (Keith and Kroese, 2002); scheduling (Margolin, 2002, 2004); vehicle routing (Chepuri and Homem-de-Mello, 2005); reinforcement learning (Mannor, Rubinstein, and Gat, 2003; Menache, Mannor, and Shimkin, 2005); project management (Cohen, Golany, and Shtub, 2005); heavy-tail distributions (Asmussen, Kroese, and Rubinstein, 2005); (Kroese and Rubinstein, 2004); CE convergence (Margolin, 2005); network reliability (Hui et al., 2005); repairable systems (Ridder, 2005); and maxcut and bipartition problems (Rubinstein, 2002).”

The rest of the paper describes the basic CE algorithm, its convergence properties, specific applications, and variations.

## Related Posts via Categories